751 research outputs found

    Tensor Spectra Templates for Axion-Gauge Fields Dynamics during Inflation

    Get PDF
    SU(2)SU(2) gauge fields can generate large gravitational waves during inflation, if they are coupled to an axion which can be either the inflaton or a spectator field. The shape of the produced tensor power spectrum Ph\mathcal{P}_h depends on the form of the axion potential. We derive analytic expressions and provide general templates for Ph\mathcal{P}_h for various types of the spectator axion potential. Furthermore, we explore the detectability of the oscillatory feature, which is present in Ph\mathcal{P}_h in the case of an axion monodromy model, by possible future CMB B-mode polarization observations.Comment: 31 pages, 11 figure

    Longest Common Extensions with Recompression

    Get PDF
    Given two positions i and j in a string T of length N, a longest common extension (LCE) query asks for the length of the longest common prefix between suffixes beginning at i and j. A compressed LCE data structure stores T in a compressed form while supporting fast LCE queries. In this article we show that the recompression technique is a powerful tool for compressed LCE data structures. We present a new compressed LCE data structure of size O(z lg (N/z)) that supports LCE queries in O(lg N) time, where z is the size of Lempel-Ziv 77 factorization without self-reference of T. Given T as an uncompressed form, we show how to build our data structure in O(N) time and space. Given T as a grammar compressed form, i.e., a straight-line program of size n generating T, we show how to build our data structure in O(n lg (N/n)) time and O(n + z lg (N/z)) space. Our algorithms are deterministic and always return correct answers

    Faster Compact On-Line Lempel-Ziv Factorization

    Get PDF
    We present a new on-line algorithm for computing the Lempel-Ziv factorization of a string that runs in O(NlogN)O(N\log N) time and uses only O(Nlogσ)O(N\log\sigma) bits of working space, where NN is the length of the string and σ\sigma is the size of the alphabet. This is a notable improvement compared to the performance of previous on-line algorithms using the same order of working space but running in either O(Nlog3N)O(N\log^3N) time (Okanohara & Sadakane 2009) or O(Nlog2N)O(N\log^2N) time (Starikovskaya 2012). The key to our new algorithm is in the utilization of an elegant but less popular index structure called Directed Acyclic Word Graphs, or DAWGs (Blumer et al. 1985). We also present an opportunistic variant of our algorithm, which, given the run length encoding of size mm of a string of length NN, computes the Lempel-Ziv factorization on-line, in O(mmin{(loglogm)(loglogN)logloglogN,logmloglogm})O\left(m \cdot \min \left\{\frac{(\log\log m)(\log \log N)}{\log\log\log N}, \sqrt{\frac{\log m}{\log \log m}} \right\}\right) time and O(mlogN)O(m\log N) bits of space, which is faster and more space efficient when the string is run-length compressible

    Fully dynamic data structure for LCE queries in compressed space

    Get PDF
    A Longest Common Extension (LCE) query on a text TT of length NN asks for the length of the longest common prefix of suffixes starting at given two positions. We show that the signature encoding G\mathcal{G} of size w=O(min(zlogNlogM,N))w = O(\min(z \log N \log^* M, N)) [Mehlhorn et al., Algorithmica 17(2):183-198, 1997] of TT, which can be seen as a compressed representation of TT, has a capability to support LCE queries in O(logN+loglogM)O(\log N + \log \ell \log^* M) time, where \ell is the answer to the query, zz is the size of the Lempel-Ziv77 (LZ77) factorization of TT, and M4NM \geq 4N is an integer that can be handled in constant time under word RAM model. In compressed space, this is the fastest deterministic LCE data structure in many cases. Moreover, G\mathcal{G} can be enhanced to support efficient update operations: After processing G\mathcal{G} in O(wfA)O(w f_{\mathcal{A}}) time, we can insert/delete any (sub)string of length yy into/from an arbitrary position of TT in O((y+logNlogM)fA)O((y+ \log N\log^* M) f_{\mathcal{A}}) time, where fA=O(min{loglogMloglogwlogloglogM,logwloglogw})f_{\mathcal{A}} = O(\min \{ \frac{\log\log M \log\log w}{\log\log\log M}, \sqrt{\frac{\log w}{\log\log w}} \}). This yields the first fully dynamic LCE data structure. We also present efficient construction algorithms from various types of inputs: We can construct G\mathcal{G} in O(NfA)O(N f_{\mathcal{A}}) time from uncompressed string TT; in O(nloglognlogNlogM)O(n \log\log n \log N \log^* M) time from grammar-compressed string TT represented by a straight-line program of size nn; and in O(zfAlogNlogM)O(z f_{\mathcal{A}} \log N \log^* M) time from LZ77-compressed string TT with zz factors. On top of the above contributions, we show several applications of our data structures which improve previous best known results on grammar-compressed string processing.Comment: arXiv admin note: text overlap with arXiv:1504.0695
    corecore